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Abstract. We continue our endeavor to grasp the basic ideas about sets
which underlie mathematics. This time we pursue the fundamental objects

which give us algebra. These objects are binary operators.

1. Binary Operators

Let A be a set. A binary operator on A is a function

∗ : A×A→ A.

A binary operator is simply something that takes two elements of a set and gives
back a third element of the same set.

Example 1. Let R be the set of real numbers. Then + : R× R → R, given by
+(x, y) = x+ y, is a binary operator. Also · : R×R → R, given by ·(x, y) = xy,
is a binary operator.

In general, in the sets N, Z, Q, R, and C, addition and multiplication are
binary operators. �

Example 2. Let X be a set and let P(X) be the power set of X. Then union
and intersection are binary operators on P(X); for example

∩ : P(X)× P(X) → P(X)

is defined by ∩(A,B) = A ∩B, where A,B ⊂ X. �

Example 3. Let X be a set and let Sym(X) be the set of all permutations of
X. Then ◦ is a binary operator on Sym(X):

◦ : Sym(X)× Sym(X) → Sym(X)

is defined by ◦(φ, ψ) = φ ◦ ψ. �

Let A be a set and let ∗ : A × A → A be a binary operator. As in the
above examples, it is customary to write a ∗ b instead of ∗(a, b), where a, b ∈ A.
However, we keep in mind that ∗ is a function and that a ∗ b ∈ A.
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2. Closure

Let ∗ : A × A → A be a binary operator on a set A and let B ⊂ A. We
say that B is closed under the operation of ∗ if for every b1, b2 ∈ B, we have
b1 ∗ b2 ∈ B.

Example 4. Let E be the set of even integers. Then E is closed under the
operations of addition and multiplication of integers. Indeed, the sum of even
integers is even, and the product of even integers is even.

Let O be the set of odd integers. Then O is closed under multiplication.
However, O is not closed under addition, because the sum of two odd integers is
even. �

Example 5. Let B = {a+b
√

2 ∈ R | a, b ∈ Q}. Then B is closed under addition
and multiplication of real numbers. For example, if a1 + b1

√
2 and a2 + b2

√
2 are

two element of B, then

(a1 + b1
√

2) + (a2 + b2
√

2) = (a1 + a2) + (b1 + b2)
√

2 ∈ B
and

(a1 + b1
√

2)(a2 + b2
√

2) = (a1a2 + 2b1b2) + (a1b2 + a2b1)
√

2 ∈ B.
Note that these results are in B because Q itself is closed under addition and
multiplication. Therefore a1a2 + 2b1b2 ∈ Q, and so forth. �

Example 6. Let X be a set and let Y ⊂ X. Then P(Y ) ⊂ P(X), and the subset
P(Y ) is closed under the operations of intersection and union of subset of X. �

3. Standard Notation

It is very common that binary operations be named addition or multiplication,
even if the elements of the set are not numbers in the common sense.

If the operation on A is named addition and denoted +, then it is standard
that the identity element be named zero and denoted 0 and that the inverse of
a is denoted −a. By convention, one may assume that an operation denoted by
+ is commutative and associative. If n is a natural number and a ∈ A, then na
means a added to itself n times.

If the operation on A is denoted ·, it is usually but not alway called multi-
plication and the · is dropped, so that ab means a · b. The identity element in
this notation is usually called one and written 1. The inverse of a, if it exists, is
denoted a−1. If n is a natural number and a ∈ A, the an means a multiplied by
itself n times.

When people refer to general binary operations, usually multiplicative nota-
tion is used, since it is the simplist. We also use ∗ to mean a “generic” binary
operation.
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4. Properties of Binary Operators

Let A be a set and let ∗ : A×A→ A be a binary operator on A.
We say that ∗ is commutative if for every a, b ∈ A we have

a ∗ b = b ∗ a.
We say that ∗ is associative if for every a, b ∈ A we have

(a ∗ b) ∗ c = a ∗ (b ∗ c).
We say that e ∈ A is an identity element for ∗ if for every a ∈ A we have

e ∗ a = a ∗ e = a.

We note that if ∗ has an identity element, then it is necessarily unique. For
suppose that e and f are both identity elements for the operation ∗. Then
e ∗ f = f since e is an identity, but also e ∗ f = e since f is an identity. Thus
e = f .

Suppose that e is an identity for ∗. We say that b ∈ A is an inverse for a ∈ A
if

a ∗ b = b ∗ a = e.

We note that when ∗ is associative, then inverses are unique. Indeed, if b and c
are both inverses for a, then a∗b = e, and applying c on the left gives c∗(a∗b) =
c ∗ e = c. But if ∗ is associative, c ∗ (a ∗ b) = (c ∗ a) ∗ b = e ∗ b = b, so c = b. If
a ∈ A has an inverse, we say that a is invertible.

If ∗ has an identity and every element has an inverse, we say that ∗ is an
invertible operation.

Example 7. The real numbers have two binary operations, addition and multi-
plication. Each is commutative and associative. The additive identity is 0, and
the multiplicative identity is 1. Every element a has an additive inverse −a, and
if a 6= 0, it has a multiplicative inverse a−1 = 1

a .
The subset Q, Z, and N of R each contain 0 and 1, and these act as additive

and multiplicative identities in these sets. Every nonzero rational number has an
additive and multiplicative inverse. The integers have additive inverses but not
multiplicative inverses. The natural numbers do not contain additive inverses.
�

Example 8. Let X be a set and consider intersection and union of subsets
of X. These are operations on P(X) which are commutative and associative.
Intersection has an identity element, which is the entire set X, since for A ⊂ X,
we have A ∩X = A. Union also has an identity element, which is ∅. Neither of
these operations supports inverses.

However, the operation of symmetric difference on P(X), defined by

A4B = (A ∪B) r (A ∩B),

is commutative, associative, and invertible. The identity element is ∅, and the
inverse of A ∈ P(X) is itself. �

Example 9. Let X be a set and consider composition of permutations of X.
This operation on Sym(X) is associative, because composition of functions is
always associative. It is also invertible. The identity element for this operation
is the identity function idX . The inverse of a permutation exists because bijective
functions are always invertible.
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However, composition of permutations is not commutative. For example, let
X = {1, 2, 3}. Let φ ∈ Sym(X) be given by (1 7→ 2, 2 7→ 3, 3 7→ 1) and let ψ ∈
Sym(X) be given by (1 7→ 2, 2 7→ 1, 3 7→ 3). Then φ ◦ ψ = (1 7→ 3, 2 7→ 2, 3 7→ 1)
but ψ ◦ φ = (1 7→ 1, 2 7→ 3, 3 7→ 2). Thus φ ◦ ψ 6= ψ ◦ ψ. �

Example 10. The standard dot product on Rn is defined by

~v · ~w = v1w1 + · · ·+ vnvw,

where ~v = (v1, . . . , vn) and ~w = (w1, . . . , wn). Note that for n > 1, this is NOT
a binary operator, since is is a function

Rn × Rn → R;

to be a binary operator on Rn, the codomain has to be Rn.

Example 11. Let X be a set and let F(X,X) be the set of all functions, not
necessarily bijective, from X into itself. Composition is a binary operator on
F(X,X), and Sym(X) is a closed under this operation. The same identity el-
ement idX exists in this set. However, not every element is invertible; in fact,
Sym(X) is the subset of invertible elements.

Let h ∈ F(X,X). This is the same as saying h : X → X. For each n ∈ N,
define the function hn : X → X in the natural way. For n = 0, h0 = idX . For
n = 1, h1 = h. However, h2 = h ◦ h, h3 = h ◦ h ◦ h, and in general,

hn = h ◦ · · · ◦ h (n times).

Example 12. An m × n matrix with entries in R is an array of elements of R
with m rows and n columns. The entries of a matrix are often labeled aij , where
this is the entry in the ith row and jth column. We may write such a matrix
with the notation (aij).

An m × n matrix A = (aij) may be added to an m × n matrix B = (bij) to
give an m× n matrix AB = C = (cij) by the formula

cij = aij + bij .

An m× n matrix A = (aij) may be multiplied by an n× p matrix B = (bjk)
to give an m× p matrix AB = C = (cik) by the formula

cik =
n∑

j=1

aijbjk;

thus the ikth entry of C is the dot product of the ith row of A with the kth

column of B.
Let Mn(R) be the set all all n×nmatrices over R. Then addition of matrices is

a binary operation on Mn(R) which is commutative, associative, and invertible.
Also, multiplication of matrices is a binary operation on Mn(R) which is asso-
ciative and has an identity. The identity is simply the matrix given by aij = 1
if i = j and aij = 0 otherwise. However, this operation is not commutative, and
there are many elements which do not have inverses.
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5. Exercises V

Exercise 1. In each case, we define a binary operation ∗ on R. Determine if
∗ is commutative and/or associative, find an identity if it exists, and find any
invertible elements.
(a) x ∗ y = xy + 1;
(b) x ∗ y = 1

2xy;
(c) x ∗ y = |x|y.

Exercise 2. Consider the plane R2. Define a binary operation ∗ on R2 by

(x1, y1) ∗ (x2, y2) = (
x1 + x2

2
,
y1 + y2

2
).

Thus the “product” of two points under this operation is the point which is
midway between them. Determine if ∗ is commutative and/or associative, find
an identity if it exists, and find any invertible elements.

Exercise 3. Let I be the collection of all open intervals of real numbers. We
consider the empty set to be an open interval.
(a) Show that I is closed under the operation of ∩ on P(R).
(b) Show that I is not closed under the operation of ∪ on P(R).

Exercise 4. Let X and Y be sets and let ∗ : Y × Y → Y be a binary operation
on Y which is commutative, associative, and invertible. Let f : X → Y be a
bijective function. Define an operation � on X by

x1 � x2 = f−1(f(x1) ∗ f(x2)).

Show that � is commutative, associative, and invertible.

Exercise 5. Let X and Y be sets and let ∗ : Y × Y → Y be a binary operation
on Y . Let F(X,Y ) be the set of all functions from X to Y . Show that ∗ induces
a binary operation, which may also be called ∗, on F(X,Y ).

Exercise 6. Let X be a set and let ∗ : X ×X → X be a binary operation on
X which is associative and invertible. Show that ∗ induces a binary operation,
which may also be called ∗, on P(X). Is it associative? Does it have an identity?
Is it invertible?
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